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Scaling for domain growth in the Ising model with competing dynamics
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We study the domain growth of the one-dimensional kinetic Ising model under the competing influence of
Glauber dynamics at temperatif@nd Kawasaki dynamics with a configuration-independent rate. The scaling
of the structure factor is shown to have the form for nonconserved dynamics with the corrections arising from
the spin-exchange process, i.8(k,t)=Lgq(kL,t/7) +g;(kL,t/7)+ - - -, and the corresponding scaling func-
tions are calculated analytically. A correction to the Porod law at zero temperature is also given.
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The kinetic Ising models have been widely studied to un- The Hamiltonian for this one-dimensional system is given
derstand the far-from-equilibrium phenomena such as théy

nonconserved Glauber modgl] and the conserved Ka- N
wasaki model[2]. In recent years, the systems with more H=-33 0o, (1)
complex mechanisms, e.g., the Ising models with competing = e

Glauber and Kawasaki dynamif3,4], have been introduced
to investigate the basic questions of nonequilibrium phas&heres;==x1 is the Ising spin variable. The configuration
transitions and critical phenomena. For these models wit®f the system evolves with time via the combination of
competing dynamics, much of the interest has been focuse@lauber dynamics with the spin-flip raw("=(27,)"1[1
on the properties of nonequilibrium steady state, including— yoi(oi_1+ oi+1)/2], wherey=tanh K with K=J/kgT,
the nonequilibrium phase diagraif#s-6] and the critical ex- and Kawasaki dynamics with the configuration-independent
ponents[6,7]. However, the problem of domain growth, spin-exchange rat\é/i(i%zl:(27'2)_1(1—0'i0'i+1). The equa-
which describes the behavior of the system quenched into aions for the expectation value of the spin and the equal-time
ordered phase from a high-temperature initial state and ipair correlation function have been derivieldl] and the lat-
important in understanding the dynamics of nonequilibriumter is written as
processes, has received relatively little attention.

Our interest here is in the study of domain growth for the 7 dC(r,t)/dt=—2C(r,t) +y'[C(r— 1)+ C(r+ 1,t)]
Ising system with competing dynamics. It is well known —
[8,9] that in the late stage regime, the nonequilibrium process (r=2),
of domain growth exhibits dynamic scaling behaviors and 24 K @)
the scaling forms of the equal-time pair correlation function 7'dC(1t)/dt=—-——C(1t)+y'C(2t)+y' —
C(r,t) and its Fourier transformation, the structure factor 1+«
S(k,t), are given by C(r,t)=f(r/L(t)) and S(k,t)
=L(t)%(kL(t)), respectively, wherel(t) is the single
length scale characterizing the domain structure é@igithe  provided the initial probability distribution is translationally
spatial dimensionality. The corrections to the above scalingnvariant, where the pair correlation functio(r,t)
arising from the nonscaling initial condition were determined= (g;(t) o, (1)), k=27, /7,, 7' =71/(1+«), andy’ = (y
recently at zero temperatuf&0]. However, the direct dem- 4+ x)/(1+ k).
onstration of scaling and the exact calculation of the scaling From Eq.(2) the scaling results for domain growth can be
functions are still lacking except in some simple modelscalculated directly following the method given by Brigh2].

[10-13. Thus it is of interest to give a direct and exact By Fourier transforming in space, the equation for the struc-
calculation of scaling behaviors for the system with moretyre factorS(k,t) is obtained,

complex dynamics. X
The system considered here is the one-dimensional Ising |, K

model evolving by a combination of the spin-flip Glauber 7 dS(k,t)/dt==%S(k,t) +A(t) = 7 n(t)cosk,

process at temperatufe and the spin-exchange Kawasaki 3)

process with a configuration-independent rate that occurs as 1

if the system were at infinite temperatdf14]. In this work NEK Sk, =1,

we study the domain growth of this soluble model following

a sudden quench from an initial high temperature to a finalhere y,=2(1— y’cosk), A(t)==,7S(k,t)/N, and n(t)

temperaturel and calculate the corresponding scaling prop-=[1—C(1,t)]/2 denotes the average wall density. This

erties analytically. equation can be solved by a Laplace transformation in time

1+«’

c(ot)=1
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via S(k,s)= [ydtexp(=stSkz). In the scaling regime of L, T P K K'? —
late times after the quench, the characteristic domain sizéc’(k’s)_[(q' ST 2s T g 1T 5 |pr(v)s
L(t) is known to obey the growth law(t)~t*, where the 5 o

growth exponenk is 1/2 and 1/3 for systems with noncon- n kK Ktx bl“(v)s‘”](r’s+ K2+ k'2)~1
served and conserved scalar order parameters, respectively 1+xk 2

[8,9]. Its inverse, the average wall density, then satisfies 4)

n(t)=btX/2=bt"~ /2 with 0<wv<1, as well as a certain

coefficient b, and the corresponding Laplace transform is

n(s)=bI'(v)s™"/2. Here we assume that the above scaling

forms of the domain size and the wall density remain for this )

model with competing dynamics, which will be justified When domains grow at small but nonzero temperaflire
posteriori Thus, on the condition that the initial state con- Herex’=¢ *=2exp(-2K)/J1+ «, where¢ is the correla-
tains no long-range order, in the scaling limg—¢0, k  tion length for this system with competing dynamjdg}].
—0 with s/kY* arbitrary we have Using the inverse Laplace transform on E4). yields

5 k't ) K2+ k'? K%t
k'exp ———y | +kexp — —t+—y
T T T

Skt =2| — N fld 12
e k?+k'2Jo vy

ar’

N kb 1\ 1+ K'2 172 _g 1 F _l+ 'K’Zt k't
1+ x|\ 74 2 2V »o T, - ex >
1 k%t (1 Y k?+ k'? K>+ k'? K%t
+—— [ dyy YA1-y)"Fy| it t(1-y) |exp — t+—y
vor'Jo 7’ 7’ 7’
k2+K/2 2+K12 k2+K/2
+ t7Fq| v;1+ v, t|exp — t], (5)
27" v 7! 7

whereB(x,y) is the beta function andF,(«;8;z) is the degenerate hypergeometric functj@s]. It is shown from Eq(5)
that a scaling solution requirégt)~t*? i.e., »=1/2, and then the equal-time structure factor has the scaling form

S(k,t) =tY2go(K%t, k" 2t) + gy (K2t, k" 2t) + 1~ Yag,(K2t, k' 2t) + 1~ 1ga(k%t, k' 2t), (6)

with the scaling functions

1/2
1 1 1 k't K2+ k'2 K%t
go(kzt,x’zt)=2(—> —f dy y 12 K’zexp<——y)+k2exp(— t+—vy]| |, 7
77 k?+k'2Jo T 7 T
(Kt 2= o 2 N . <)L -y 25 < Klzt(l )
K 2t) = —| |- 5il——|exp — ——|+2— - 55 -
01 K [ TiF1| 5 I - o yy )Tl 505 m y
K2 K2t
xXexp — —t+—y||, (8
T T
2t = kb kz-l—K’zt E 1_3_k2+K’2t k2+K’2t 9
9a(kt, k )—mTl it eX " , 9
) 2 12 2
%t 1'2) = «b i K_t_ E K_t _K_t E ! —~1/204 _\\ 12
Ga(Kt, k") = 77— — 5| ~mFi| 51 | e pr: +2 0dyy (1-y)
1 3 K>+«k'2 K2+ x'2 K%t
X1F1| 5553 —t(1-y) |exp — —t+—y (10
T T T
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Thus, from this scalin.g re_sult of the structure factor it is S(k,t)=Lgo(kL)+g;(kL)+ L tg,(kL), (16)
shown that the domain size(t) scales ag* and, corre-
spondingly, the wall density(t) has the scaling form™*,
which is consistent with the assumption made above before
the calculation. Here the growth exponents 1/2 for the  respectively. By Fourier transforming, the corresponding
competing dynamics, the same as that for ¢iegle non-  scaling of the equal-time pair correlation function is obtained
conserved Glauber system.

For x'’t>1, one can obtain the asymptotic result of
S(k.t), thats, C(r 1) = Fo(rIL,t )+ LM (r/L th7) + L= 26 5(r/L t/ 7)

+L73f5(r/L,t/7) (17
2k’ kb 1—k«'

_ —1/2
Sk)= et (11)

at nonzero temperature and

while for x'%t—0, the scaling result for quench =0,
which is the main interest in the one-dimensional system, is -1 -2
: ' )= + +
given by C(r,t)=fo(r/L)+L*f4(r/L)+L"“f5(r/L) (18

12 ) at T=0. In the expressions of these scaling forms, the first

Kt)=2 v fld ~U2gyy] — k7t 1-y) leading term exhibits the scalings for the nonconserved dy-
S(kit)= J oYY - (1-y namics in one dimensio®,12] associated with the spin-flip

Glauber process, while the other terms are the corrections to

«b ‘ ( 1 )1’2 scaling that arise from the spin-exchange Kawasaki process,

which can be shown from the expressions of the scaling

e \mr functions. In formulag8)—(10) for quench to nonzero tem-
K2t (1 perature, the correction functions, g,, andg; vary di-

X| —m+2— | dyy Yq1-y)¥? rectly as«/(1+ k) and vanish if the contribution of the spin-
7’ exchange process is negligible or, equivalentks—O0.

Consequently, the scaling forns(k,t)=t"%gy(k’t,«’?t)

with the scaling functiorgy(x,y) and the asymptotic result

S(k,t)—2k'/(k?+ k'?) for k'?t>1 obtained by Bray12]

for the one-dimensional Ising model with thesingle

kzt) p( kzt)] (12 Glauber dynamics are recovered from E@—(11). Similar
exp — ,

results can be obtained for zero temperature, that is, one can
recover the well known scaling for®(k,t) =t*?g,(k?t) and
the Porod lawS(k,t) ~k ™2 for Glauber Ising chairf12,13
from Egs.(12)—(14). Moreover, from Eqs(17) and(18) we
note that the leading correction to the nonconserved scaling
form of the pair correlation function i& ~*f,(r/L) here,
S(k,t) =tY2g,(K2t) + g, (K2t)+t~Y2g,(k%). (13  originating from the spin-exchange process, while in the ab-
sence of this process, associated with departure of the initial
condition from the scaling morphology, it is~*f,(r/L),
For k’t>1, Eq.(12) becomes according to the recent work of Bragt al. [10].
From the above scaling solution no correction to scaling
of the domain sizeé.(t) and the wall densityi(t) is shown,
1212 kb, as expected before the calculation. However, if assuming the
S(k,t)=2(77'1) 7K +mt ' (14 correction to scaling oL (t) and n(t) before solving the
evolution equation(3), e.g., n(t)~bt 1+ bt X2+ ...

which is of the scaling form

which yields a correction to the Porod ldd6]. with 0<x;<x,<- - -, we find that the scaling solution simi-

It should be noted that the scaling forms of the structurdar to Egs.(6) and(15) cannot be obtained.
factor (6) at nonzero temperature and E43) at zero tem- In summary, we have shown that for this Ising system
perature can be rewritten as with competing Glauber and Kawasaki dynamics, the spin-

exchange process with a configuration-independent rate has
the effect of corrections to scaling, while the leading contri-
S(k,t)=Lgo(KL,t/7)+ gy (kL,t/7)+ L~ tgo(kL,t/7) bution to scaling is of the form for the nonconserved Glauber
_ dynamics, as shown in Eq$5) and (12). More work is
+L%gs(kL,t/7), (19 needed for a further understanding of these results.
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