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Scaling for domain growth in the Ising model with competing dynamics
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We study the domain growth of the one-dimensional kinetic Ising model under the competing influence of
Glauber dynamics at temperatureT and Kawasaki dynamics with a configuration-independent rate. The scaling
of the structure factor is shown to have the form for nonconserved dynamics with the corrections arising from
the spin-exchange process, i.e.,S(k,t)5Lg0(kL,t/t)1g1(kL,t/t)1•••, and the corresponding scaling func-
tions are calculated analytically. A correction to the Porod law at zero temperature is also given.
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The kinetic Ising models have been widely studied to u
derstand the far-from-equilibrium phenomena such as
nonconserved Glauber model@1# and the conserved Ka
wasaki model@2#. In recent years, the systems with mo
complex mechanisms, e.g., the Ising models with compe
Glauber and Kawasaki dynamics@3,4#, have been introduced
to investigate the basic questions of nonequilibrium ph
transitions and critical phenomena. For these models w
competing dynamics, much of the interest has been focu
on the properties of nonequilibrium steady state, includ
the nonequilibrium phase diagrams@4–6# and the critical ex-
ponents @6,7#. However, the problem of domain growth
which describes the behavior of the system quenched int
ordered phase from a high-temperature initial state an
important in understanding the dynamics of nonequilibriu
processes, has received relatively little attention.

Our interest here is in the study of domain growth for t
Ising system with competing dynamics. It is well know
@8,9# that in the late stage regime, the nonequilibrium proc
of domain growth exhibits dynamic scaling behaviors a
the scaling forms of the equal-time pair correlation functi
C(r ,t) and its Fourier transformation, the structure fac
S(k,t), are given by C(r ,t)5 f „r /L(t)… and S(k,t)
5L(t)dg„kL(t)…, respectively, whereL(t) is the single
length scale characterizing the domain structure andd is the
spatial dimensionality. The corrections to the above sca
arising from the nonscaling initial condition were determin
recently at zero temperature@10#. However, the direct dem
onstration of scaling and the exact calculation of the sca
functions are still lacking except in some simple mod
@10–13#. Thus it is of interest to give a direct and exa
calculation of scaling behaviors for the system with mo
complex dynamics.

The system considered here is the one-dimensional I
model evolving by a combination of the spin-flip Glaub
process at temperatureT and the spin-exchange Kawasa
process with a configuration-independent rate that occur
if the system were at infinite temperature@3,14#. In this work
we study the domain growth of this soluble model followin
a sudden quench from an initial high temperature to a fi
temperatureT and calculate the corresponding scaling pro
erties analytically.
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The Hamiltonian for this one-dimensional system is giv
by

H52J(
i 51

N

s is i 11 , ~1!

wheres i561 is the Ising spin variable. The configuratio
of the system evolves with time via the combination
Glauber dynamics with the spin-flip rateWi

(1)5(2t1)21@1
2gs i(s i 211s i 11)/2#, whereg5tanh 2K with K5J/kBT,
and Kawasaki dynamics with the configuration-independ
spin-exchange rateWii 11

(2) 5(2t2)21(12s is i 11). The equa-
tions for the expectation value of the spin and the equal-t
pair correlation function have been derived@14# and the lat-
ter is written as

t8dC~r ,t !/dt522C~r ,t !1g8@C~r 21,t !1C~r 11,t !#

~r>2!,
~2!

t8dC~1,t !/dt52
21k

11k
C~1,t !1g8C~2,t !1g82

k

11k
,

C~0,t !51

provided the initial probability distribution is translationall
invariant, where the pair correlation functionC(r ,t)
5^s i(t)s i 1r(t)&, k52t1 /t2 , t85t1 /(11k), andg85(g
1k)/(11k).

From Eq.~2! the scaling results for domain growth can b
calculated directly following the method given by Bray@12#.
By Fourier transforming in space, the equation for the str
ture factorS(k,t) is obtained,

t8dS~k,t !/dt52gkS~k,t !1A~ t !2
2k

11k
n~ t !cosk,

~3!
1

N(
k

S~k,t !51,

where gk52(12g8cosk), A(t)5(kgkS(k,t)/N, and n(t)
5@12C(1,t)#/2 denotes the average wall density. Th
equation can be solved by a Laplace transformation in t
7126 © 1998 The American Physical Society



si

-
tiv
fie

is
in
hi

n-

PRE 58 7127SCALING FOR DOMAIN GROWTH IN THE ISING . . .
via S̄(k,s)5*0
`dt exp(2st)S(k,t). In the scaling regime of

late times after the quench, the characteristic domain
L(t) is known to obey the growth lawL(t);tx, where the
growth exponentx is 1/2 and 1/3 for systems with noncon
served and conserved scalar order parameters, respec
@8,9#. Its inverse, the average wall density, then satis
n(t)5bt2x/25btn21/2 with 0,n,1, as well as a certain
coefficient b, and the corresponding Laplace transform
n(s)5bG(n)s2n/2. Here we assume that the above scal
forms of the domain size and the wall density remain for t
model with competing dynamics, which will be justifieda
posteriori. Thus, on the condition that the initial state co
tains no long-range order, in the scaling limit (s→0, k
→0 with s/k1/x arbitrary! we have
ze

ely
s

g
s

S̄~k,s!5H ~t8s1k82!1/2F2s212
k

11kS 11
k82

2 DbG~n!s2nG
1

k

11k

k21k82

2
bG~n!s2nJ ~t8s1k21k82!21

~4!

when domains grow at small but nonzero temperatureT.
Herek85j21.2 exp(22K)/A11k, wherej is the correla-
tion length for this system with competing dynamics@14#.

Using the inverse Laplace transform on Eq.~4! yields
S~k,t !52S t

pt8
D 1/2

1

k21k82E0

1

dy y21/2Fk82expS 2
k82t

t8
yD 1k2expS 2

k21k82

t8
t1

k2t

t8
yD G

1
kb

11kH S 1

pt8
D 1/2S 11

k82

2 D tn21/2F2BS 1

2
,n D 1F1S n;

1

2
1n;

k82t

t8
D expS 2

k82t

t8
D

1
1

n

k2t

t8
E

0

1

dy y21/2~12y!n
1F1S n;11n;

k21k82

t8
t~12y!D expS 2

k21k82

t8
t1

k2t

t8
yD G

1
k21k82

2t8n
tn

1F1S n;11n;
k21k82

t8
t D expS 2

k21k82

t8
t D J , ~5!

whereB(x,y) is the beta function and1F1(a;b;z) is the degenerate hypergeometric function@15#. It is shown from Eq.~5!
that a scaling solution requiresL(t);t1/2, i.e., n51/2, and then the equal-time structure factor has the scaling form

S~k,t !5t1/2g0~k2t,k82t !1g1~k2t,k82t !1t21/2g2~k2t,k82t !1t21g3~k2t,k82t !, ~6!

with the scaling functions

g0~k2t,k82t !52S 1

pt8
D 1/2

1

k21k82E0

1

dy y21/2Fk82expS 2
k82t

t8
yD 1k2expS 2

k21k82

t8
t1

k2t

t8
yD G , ~7!

g1~k2t,k82t !5
kb

11kS 1

pt8
D 1/2F2p 1F1S 1

2
;1;

k82t

t8
D expS 2

k82t

t8
D 12

k2t

t8
E

0

1

dy y21/2~12y!1/2
1F1S 1

2
;
3

2
;
k21k82

t8
t~12y!D

3expS 2
k21k82

t8
t1

k2t

t8
yD G , ~8!

g2~k2t,k82t !5
kb

11k

k21k82

t8
t 1F1S 1

2
;
3

2
;
k21k82

t8
t D expS 2

k21k82

t8
t D , ~9!

g3~k2t,k82t !5
kb

11kS 1

pt8
D 1/2

k82t

2 F2p1F1S 1

2
;1;

k82t

t8
D expS 2

k82t

t8
D 12

k2t

t8
E

0

1

dy y21/2~12y!1/2

31F1S 1

2
;
3

2
;
k21k82

t8
t~12y!D expS 2

k21k82

t8
t1

k2t

t8
yD G . ~10!
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Thus, from this scaling result of the structure factor it
shown that the domain sizeL(t) scales astx and, corre-
spondingly, the wall densityn(t) has the scaling formt2x,
which is consistent with the assumption made above be
the calculation. Here the growth exponentx is 1/2 for the
competing dynamics, the same as that for the~single! non-
conserved Glauber system.

For k82t@1, one can obtain the asymptotic result
S(k,t), that is,

S~k,t !→
2k8

k21k82
1

kb

11k

12k8

2
t21/2, ~11!

while for k82t→0, the scaling result for quench toT50,
which is the main interest in the one-dimensional system
given by

S~k,t !52S t

pt8
D 1/2E

0

1

dy y21/2expF2
k2t

t8
~12y!G

1
kb

11kH S 1

pt8
D 1/2

3F2p12
k2t

t8
E

0

1

dy y21/2~12y!1/2

31F1S 1

2
;
3

2
;
k2t

t8
~12y!D expS 2

k2t

t8
~12y!D G

1t21/2
k2t

t8
1F1S 1

2
;
3

2
;
k2t

t8
D expS 2

k2t

t8
D J , ~12!

which is of the scaling form

S~k,t !5t1/2g0~k2t !1g1~k2t !1t21/2g2~k2t !. ~13!

For k2t@1, Eq. ~12! becomes

S~k,t !→2~pt8t !21/2k221
kb

2~11k!
t21/2, ~14!

which yields a correction to the Porod law@16#.
It should be noted that the scaling forms of the struct

factor ~6! at nonzero temperature and Eq.~13! at zero tem-
perature can be rewritten as

S~k,t !5Lg0~kL,t/t!1g1~kL,t/t!1L21g2~kL,t/t!

1L22g3~kL,t/t!, ~15!

with t51/k825j2 andL;t1/2, and
re

is

e

S~k,t !5Lg0~kL!1g1~kL!1L21g2~kL!, ~16!

respectively. By Fourier transforming, the correspond
scaling of the equal-time pair correlation function is obtain

C~r ,t !5 f 0~r /L,t/t!1L21f 1~r /L,t/t!1L22f 2~r /L,t/t!

1L23f 3~r /L,t/t! ~17!

at nonzero temperature and

C~r ,t !5 f 0~r /L !1L21f 1~r /L !1L22f 2~r /L ! ~18!

at T50. In the expressions of these scaling forms, the fi
leading term exhibits the scalings for the nonconserved
namics in one dimension@9,12# associated with the spin-flip
Glauber process, while the other terms are the correction
scaling that arise from the spin-exchange Kawasaki proc
which can be shown from the expressions of the sca
functions. In formulas~8!–~10! for quench to nonzero tem
perature, the correction functionsg1 , g2 , and g3 vary di-
rectly ask/(11k) and vanish if the contribution of the spin
exchange process is negligible or, equivalently,k→0.
Consequently, the scaling formS(k,t)5t1/2g0(k2t,k82t)
with the scaling functiong0(x,y) and the asymptotic resul
S(k,t)→2k8/(k21k82) for k82t@1 obtained by Bray@12#
for the one-dimensional Ising model with the~single!
Glauber dynamics are recovered from Eqs.~6!–~11!. Similar
results can be obtained for zero temperature, that is, one
recover the well known scaling formS(k,t)5t1/2g0(k2t) and
the Porod lawS(k,t);k22 for Glauber Ising chain@12,13#
from Eqs.~12!–~14!. Moreover, from Eqs.~17! and~18! we
note that the leading correction to the nonconserved sca
form of the pair correlation function isL21f 1(r /L) here,
originating from the spin-exchange process, while in the
sence of this process, associated with departure of the in
condition from the scaling morphology, it isL24f 1(r /L),
according to the recent work of Brayet al. @10#.

From the above scaling solution no correction to scal
of the domain sizeL(t) and the wall densityn(t) is shown,
as expected before the calculation. However, if assuming
correction to scaling ofL(t) and n(t) before solving the
evolution equation ~3!, e.g., n(t);b1t2x11b2t2x21•••

with 0,x1,x2,•••, we find that the scaling solution simi
lar to Eqs.~6! and ~15! cannot be obtained.

In summary, we have shown that for this Ising syste
with competing Glauber and Kawasaki dynamics, the sp
exchange process with a configuration-independent rate
the effect of corrections to scaling, while the leading con
bution to scaling is of the form for the nonconserved Glau
dynamics, as shown in Eqs.~5! and ~12!. More work is
needed for a further understanding of these results.

Z.F.H. acknowledges helpful discussions with Guan
Ming Zhang.
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@4# T. Toméand M. J. de Oliveira, Phys. Rev. A40, 6643~1989!.
@5# J. M. Gonzalez-Miranda, P. L. Garido, J. Marro, and J.

Lebowitz, Phys. Rev. Lett.59, 1934~1987!.
@6# B. C. S. Grandi and W. Figueiredo, Phys. Rev. E56, 5240

~1997!.
@7# J. S. Wang and J. L. Lebowitz, J. Stat. Phys.51, 893 ~1988!.
@8# J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Tran-

sitions and Critical Phenomena, edited by C. Domb and J. L
.

Lebowitz ~Academic, London, 1983!, Vol. 8.
@9# A. J. Bray, Adv. Phys.43, 357 ~1994!.

@10# A. J. Bray, N. P. Rapapa, and S. J. Cornell, Phys. Rev. E57,
1370 ~1998!.

@11# Z. F. Huang and B. L. Gu, Phys. Rev. E55, R4841~1997!.
@12# A. J. Bray, J. Phys. A23, L67 ~1990!.
@13# J. G. Amar and F. Family, Phys. Rev. A41, 3258~1990!.
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